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Abstract. Noether’s symmetry transformations for higher-order Lagrangians are studied. A
characterization of these transformations is presented, which is useful for finding gauge
transformations for higher-order singular Lagrangians, The case of second-order Lagrangians
is stodied in detail. Some examples that illustrate our results are given; in particular, for
the Lagrangian of a relativistic particle with curvature, Lagrangian gauge transformations are
obtained, though there are not Hamiltonian gauge generators for them.

1. Introduction

Among the symmetries of a c¢lassical dynamical system described through an action
principle, Noether’s symmetries [3, 18, 23, 24] {i.e. those that leave the action invariant, up
to boundary terms) play a central role. They are the usual symmetries considered in systems
of physical interest, their characterization is very simple, and, most importantly, they are
the kind of symmetries that we must consider when dealing with quantum systems; this is
clear from the path-integral formulation, where the main ingredient is the classical action
together with the measure in the space of field configurations.

Here we will consider continuous symmetries. either rigid or gauge. In the latter case, the
infinitesimal transformation will depend upon arbitrary functions of time—in mechanics—or
spacetime—in field theory. In order for these gauge transformations to exist the Lagrangian
must be singular. In a first-order Lagrangian this means that the Hessian matrix with respect
to the velocities is singular; it is so with respect to the highest derivatives in a higher-
order case. Constants of motion appear associated (o rigid symmetries whereas first-class
Hamiltonian constraints appear associated to gauge symmetries [8]; in this case Noether’s
identities also appear.

For regular Lagrangians the constant of motion associated with a Noether’'s symmetry
is, in fact, the generator of the symmetry when expressed in Hamiltonian formalism.
For singular Lagrangians this statement is not always true: a Lagrangian Noether’s
transformation may not be projectable to phase space.

In [i, 3] several aspects of Noether's symmetries for first-order Lagrangians have
been studied; in particular, the projectability of these transformations from Lagrangian
to Hamiltonian formalism. Let us explain this point. Let L(g,4) be a first-order
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Lagrangian and FL its associated Legendre transformation mapping velocity space to
phase space: FL{g.q) = (g, p), where p(g.4) = 8L/3¢ are the momenta. Given a
Noether’s symmetry dg(t, ¢.g) of L, the comresponding constant of motion GL(f, g, §)
turns out to be projectable to a function Gg{2,q, p) in phase space. This means that
there is a function Gy whose pull-back FL*(Gy) through the Legendre transformation
is Gr; in other words, Gu{t.q,p) = G1{f,q,4). (Notice that, for a singular
Lagrangian, not every function in velocity space is projectable to a function in phase
space, due to the singularity of the Legendre transformation.) Then there is a simple
characterization of the functions Gy that correspond to a Noether’s symmetry [13].
Finally, the function Gy acts as a kind of generator for the Noether’'s symmetry dg.
If the functions d4(t,q,4) are projectable to phase space, then Gy can be chosen
(between the functions whose pull-back to velocity space is Gp) such that it generates
the symmetry in the same way as for regular Lagrangians, i.e. through Poisson bracket;
otherwise, Gy still generates the Noether’s symmetry though not in such a simple
way.

In this paper we extend these results to higher-order Lagrangians. For these Lagrangians
there exists a Hamiltonian formulation, due to Ostrogradskii; in the case of singular
Lagrangians, Dirac’s theory may be applied, and, for instance, the search for generators
of symmetry transformations [11] is performed as for the first-order case. As we will see,
when we look for Noether's symmetry transformations of a higher-order singular Lagrangian
the situation is rather different from the first-order case. The most remarkable difference is
that in the higher-order case the constant of motion Gy, is not necessarily projectable to a
function Gy in phase space. )

To perform this analysis we make use of the results of [2, 5]. As it will be
summarized in section 2, given a kth-order Lagrangian there are £ — 1 intermediate spaces

Py il P — ... P B Py between those of Lagrangian (Py) and Hamiltonian (P;)
formalisms, where Fy, ..., Fi—; are the “partial Legendre—Ostrogradskii’s transformations’.
So the study of the projectability of a Lagrangian quantity (in Pg) to phase space (P)
is more involved. In particular, unlike the first-order case, the constant of motion of
a Noether's symmetry, although being projectable to the intermediate space Py, is not
necessarily projectable to the phase space.

Our characterization of Noether’s transformations is especially relevant when looking
for gauge transformations. For instance, in [13] there is a Lagrangian not possessing
Hamiltonian gauge generators, but such that our method provides Lagrangian gauge
symmetries for it. Another example is given by the Lagrangian of a conformal particle [16]:
it has a Hamiltonian gauge symmetry that cannot be written in a covariant form despite the
covariance of the Hamiltonian constraints; in this case our method allows us to construct
a covariant Lagrangian gauge symmetry. In this paper a similar behaviour is shown to
occur in a second-order Lagrangian, namely the curvature of the world-line of a relativistic
particle: it will be shown that it has no Hamiltonian gauge generators, but two independent
Lagrangian gauge transformations wiil be obtained for it.

The paper is organized as follows. In section 2 some results on higher-order Lagrangians
are summarized. In section 3 Noether’s transformations for higher-order Lagrangians are
studied, and a characterization of them is introduced. In section 4 the case of second-order
Lagrangians is developed in full detail. As an application of these results, in section 5 the
example of the particle with the curvature as a Lagrangian is studied; other examples are
also studied in the next section. The paper ends with a section with conclusions and an
appendix about Hamiltonian symmetry transformations.
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2. Higher-order Lagrangians

Here we present some results and notation from [15]. See also [2, 7, 20, 29] for higher-order
Lagrangians and higher-order tangent bundles.

Let O be an n-dimensional differentiable manifold with coordinatest g = g5. On its
higher-order tangent bundles T" @ we consider natural coordinates (go, - .., g-). A kth-order
Lagrangian is a function L: 7*Q — R.

The Ostrogradskii momenta are

k—i-1
Z (— 1)-’D-" (

where D, = 3/8t 4 Z,- gi+18/34, is the total time derivative. Equivalently,
aL : .
Ak—1 - a1 af
= — =w— =D, p. 2.2
90 P Y ' P (2.2)

Notice that 5 depends only on go, - .., G2k—i—i-
In coordinates the Euler—Lagrange equations can be written [L];) = 0, with

- k BL
o [L]=Z(—1)”D§ (3 )

q
LA 2.3)
dg0

=a— (—)"guW , (2.4)

) O0<igk-1 (2.1)
G4 j+1 :

where

and W is the Hesslan matrix with respect to the highest-order velocities,
_ a%L
dg 3 .

Introducing the momenta step-by-step, for 0 £ r £ k an intermediate space P, can
be defined, with coordinates {(gp..... Gr—1—r; p R - 1) In particular, the Lagrangian
and Hamiltonian spaces are Py = T2#~1Q and P, = T*(T*' Q). Observe that P, has a
canonical Poisson bracket, for which {gf, pj} = 6’5'

The partial Ostrogradskil’s transformations F,: P, — P, can be introduced, with local
expression

Fr(@or-er Qomtmr B P70 = (G0 Gueays PO P BT). (2.5)

" The ‘“total’ Legendre-Ostrogradskii’s transformation is FL = Fy_; ©...¢ Fo: Py = Py
On P, there exists an unambiguous evolution operator K, which is a vector field along
Frs Kpt P, — T{P.4), satisfying certain conditions [15, theorem 4]. In coordinates it reads

a .
Kr=91'_+""+q2k—l—r

g0 8g2—2—r

+(aL) 3 +(3L 0) o L aL .\ @
aq0) 30°  \ag 7 ) ap 2, L )

1 Indices of coordinates are usually suppressed.

{2.6)
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The various evolution operators are connected by
K- }-:(g) = -?:_1 (K, g) .7
for 1 € r < k — 1; here F(g) denotes the puil-back of g through 7.
These intermediate evolution operators act as differential operators from functions

in Pz to functions in F.. They can be extended to act on time-dependent functions;
for instance, given a time-dependent function in Py, g(2, go, - - - » gox—2, p%),

%) 0% (55) () 5272 (5

Ko-g=Fg nFy + ot gua Fy +—F

08 o (3t q1/7y 340 qak~1 P 390 0

By computing Ko - g — D7 (g) using the chain rule an interesting relation is obtained:
Ko-g=[L)FR; ( ) + D, Fylg). 2.8)

‘We assume that W has constant rank n —m. Then the F have constant rank 2kn —
since

a5
3920':—1—1'

and P,,(i)[ = F.(P.) is then assumed to be a closed submanifold of P-4 locally defined by m
mdependent primary constraints ¢/ ;. The prmlary Hamiltonian constraints—those defining

— (_l)k-'l =W

PV—can be chosen to be independent of p%, ..., p*~2. Then the primary constraints of
P can be obtained by applying K, to the pnmary constraints of Pry1 [15, proposition 97:
ot =K, -l (2.9)

This is also true for r = 0. Indeed one can write evolution equations on each space P,
(0 < r € k — 1); these equations are equivalent to the Euler-Lagrange equations. The first
consistency conditions for these equations are just the constraints ¢ defined above.

The primary constraints yield a basis for Ker W:

agt
=7 ()

which can also be written as (—1)*"F*_, (8¢f /8p*~"), provided that the ¢f' are defined
by (2.9). Notice that y, depends only on (g0,...,4x). Then, a basis for Ker T(F.} is
constituted by the vector fields

]
342::—1-r ]
These can be used to test the projectability of a function in P, to Pry1: I - g =0.

We notice also the commutation relations

Ty (K- g)=Fr o

for 0 < r <k —1, where I} is understood as T'% - ¢ = {g, ¢}’ }.
Usmg the null vectors y,, (2.8) and (2. 9), we obtain, in particular, the primary
Lagrangian constraints as

¢6 = Ko- &} = (=1 '[Llyy = (1! ey
There is a Hamiltonian function in Py, which is a projection of the Lagrangian energy

function Eo(go,  ++» Gag—1) = p°q1 + ...+ p* g — L(go, - - ., qv); it can be chosen to be
in the particular form

I‘; =¥y

H= Z Pri+ o, G 7. (2.10)

r=0
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The usual presymplectic (Dirac’s) analysis can be performed in Pkm. In fact, there are
stabilization algorithms for the dynamics of the intermediate spaces and all the constraints
in P,—not only the primary ones—are obtained applying K, to all the constraints in Pr4q
[15, theorem 8]. This result holds indeed at each step of the stabilization algorithms.

3. Noether’s transformations

An infinitesimal Noether's symmetry [3, 18, 23, 24] (see also [4-6, 9, 19, 21]) is an
infinitesimal transformation §g such that

8L =D, F
for a certain F. It yields a conserved quantity G = Zf:é p'éq, — F, where 8q, = Dég,
since .

[L18g +D:G =0

this is proved using the Euler—Lagrange equations (2.3) and the relation between the
momenta.

So let us consider a 8q(¢, g0, - ... gu—1)s and a function G (¢, qo, «v«s Gou—i) such that
[L16g + D,Gy, =0. 3.1
Notice that the highest derivative in this relation. g4, appears linearly, and its coefficient is
aGL '
W Bgar—1

so, contracting with the null vectors ¥, we obtain that
T, -GL=0.

That is to say, G is projectable to a function G in Py,
GL = F(Gy).

Now, using (2.8), (3.1) becomes

1 (s0- 73 (55 ) ) + Ko- Gr=o0.

Looking again at the coefficient of gu; in this expression. we obtain

(a5 (15) -

ax!d so the parentheses enclose a null vector of W;
Gy
8q — ( ) Z ™Yu
for some r#(z, 4o, ..., gx—1). Substituting this expression we obtain

Ko- G+ )_r*(ay) =0. (32)
"

So we have proved the following result:
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Theorem 1. Let §¢{t,go,...,g2x—-1) be a Noether's transformation with conserved
guantity Gp. Then Gy is projectable to a function Gy in Py such thatt
Ko-Gy=~0 (3.3)
Pu[l)

where Pé” is the primary Lagrangian constraint submanifold.

Conversely, given a function Gi(f, go, . .., g2x-2, p°) satisfying this relation, if r* are
functions such that Ko - G1 = — 3, r*(ay,) then
3G g '
sg =75y (a—pﬂ) +§r“yy . (3.4)

is a Noether’s transformation with conserved quantity Gi = F5(G1).

Notice that 8¢ is not necessarily projectable to Py, not to mention to phase space Py;
in fact, the projectability of 8¢ is equivalent to the projectability of the functions r#.

There is also a certain indetermination in the functions r# [14]. For instance, if there are
at least two primary Lagrangian constraints then one can add convenient combinations of
these constraints to the r#, namely, an antisymmetric combination of the primary Lagrangian
constraints, in a way that (3.2) is stiil satisfied; however, this change corresponds to adding
a trivial gauge transformation [17] to the original transformation, and so we still have
the same transformation on-shell (i.e. for solutions of the equations of motion). Another
interesting case occurs when the primary Lagrangian constraints are not independent; in
[14] the relation between this fact and Noether’s transformations with vanishing conserved
quantity is studied. For instance, one of the primary Lagrangian constraints, say x = Kp-v,
may be identically vanishing, and so for Gy = 0 any value for the corresponding r is
admissible to fulfil Ky - G1+ rx = 0. This yields a Noether's transformation

Y
=17 (55).

For instance, 7 might be an arbitrary function of time, thus yielding a gauge transformation,
Summing up: unlike the case of a regular Lagrangian, where there is a one-to-one
correspondence between Noether’s transformations and conserved quantities, for a singular
Lagrangian in general there is a whole family of Noether’s transformations associated with
a single conserved quantity.

4. Projectability of Noether’s transformations in the case of second-order
Lagrangians

In the first-order case, & = 1, the results of the previous section tell us that & is projectable
to the phase space P, = T*Q. As we will see shortly this is not true for a higher-order
case k 2 2. This means that there is no guarantee that we can write the conserved quantity
in canonical variables, let alone to get the Noether’s transformation in phase space: as we
can read off from (3.4), this is not always possible even for the first-order case.

In order to clarify both issues, projectability of Gi and projectability of 8g, which in
fact we will see are related, we will perform a thorough study of the case £ = 2, which will
already show the basic features of the general picture for any .

Tr = 0 means f = 0 on M (Dirac’s weak equality).
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Let us consider from now on the case £ = 2. A basis for Ker T{FL) is given [2] by

the vector fields
a3 - B 9
R P A P vl

The index ] is a part of the mdlces 1 that corresponds to the splitting of the pnmary
"Hamiltonian constraints qﬁ into the first-class ones, qb , and the second-class ones qb . The
function 7, can be written as n,, = 042 /0p!, where ¢b* r;bg !, H} are the secondary
constraints in phase space (here 4} and u; run over the same set of indices, but are
distinguished in order to label primary or secondary constraints).

It is easy to prove that the vector fields 1"O are projectable to the intermediate space Py.
In fact, since the definition of Ker T (FL) reqr.ures that I“U (Fo( %) = 0, we get immediately
1"“ oFy=Fgo0 1" {as operators on functions of the mtermedmte space).

Now we can check the condition of projectability of G to P;. Since 1"° -GL=0, we
only have to check whether 1"D - G, vanishes:

- GL=T0 - F(Gn = f;:(r;-, -G =Ty (Ko G
B 1—‘2,1 . (-—?’-u(ayu)) = -—(rg,l . r#)(a»yu)
= —a((Ty, *ryu) = —a(Ty - (FFyu)) = —aT), -39). “.D
Notice that the projectability of G, to P; depends on 3g. In this argument we have used

several commutation properties of the I''s, but there are two details to point out.
First, 1"2; - (@y,) = 0; this is a consequence of a more general result:

—I7) - (@) = FL* {65, 93)
whose proof is immediate:
=I5 {eye) =T, - (Ko ¢]) = F(Ty - (K - ) = Fy(F{ (TS - ) = F ({65, 45D
In particular, taking one of the constraints to be first class. (g5, qb{} ‘T*;) 0, the result is zero.

Second, (I"ﬁ,1 ¥y, =T ﬁ; - (r*y,), which is trivially true since the vector functions
Y. are projectable.

Therefore we have obtained an expression for f‘ﬂ,l -Gy, and in general it can be different
from zero. Notice that a sufficient condition for the projectability of G to P is that
&g be projectable to P;. Notice also that the quantity cac'(l"g,_,l - 8q) is insensitive to the
indetermination of the functions r* which is mentioned at the end of the previous section.

Now we are going to consider that the conditions are met for the projectability of G, to
a function Gy in Pz, FL*(Gg) = Gp. The function Gy has a certain degree of arbitrariness
because we can add to it arbitrary combinations of the primary as well as the secondary
constraints in P». Let us extract consequences from our assumption. The function F{{Gn)
is one of the possible functions G considered in the previous section and therefore we can
apply to it the results already obtained there. In particular,

Ko (F}(Gw) = 0.
£

But since Koo Ff =F5 0 K|,
Fo(K1-Gr) = 0
=
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which means that
Ki-Gu=) ul'sf" +3 vioel".
H Uz

Here ¢4 and ¢} are respectively the primary and the secondary constraints is Py (remember
that (1 runs over the same indices as u}). Notice that F3(¢!") = 0 and F§(¢}*) = (oyu)).
Therefore,

Ko - F1(Gu) = F (K1 - Gw) = Fg (ol ) ay)

and, according to the results of the previous section, the transformation

aF (GH)
dg =Fg ( ) Z (”11)}’#1 (4.2)
is a Noether’s transformation which is pmJectabie to Py.
If we define

G = F(Gy) — E vfl q&{""

since 3¢t /8p? = 7,2, then 8¢ = F3 (3G1/8p") and
Ko-G1=0

where we have used Koo - —layu).

Proposition I. Let G, be the conserved quantity of a Noether's transformation. The
following statements are equivalent:

(i) Gy, is projectable to a function Gy in F,.

(ii) Gy, is projectable to a function Gy in Py such that Ky - Gy = 0 (and then 8g =
F3(3G1/0p°) is a Noether’s transformation with conserved quantity Gy.)

(iii) Among the family of Noether’s transformations whose conserved quantity is Gy, there
is one transformation 8¢ which is projectable to P;.

The proof of the equivalence between the first and the second items is a direct
consequence of the discussion preceding the proposition. Their equivalence to the third
item follows also immediately from (4.1).

Now let us consider the case when 8g is not only pro;ectable to P but also to P5. This
means that v{? in (4.2) is projectable to Ps, v{” = F¥(vy?). In such a case, taking into
account that K; - @47 = ¢4, the function G}y 1= Gy — }:vg’qﬁ satisfies

K1 -Gy = (4.3)

PO
and &g can be expressed as
Gy
8q = FL*
= ( ap° )
which explicitly shows the projectability of §g to Ps.

There is still another way to write (4 3). If we define Kz = Fj o K| = Kg o F}, then
(4.3) can be rewritten as

Kg-

The definition of Kz allows us to rewrite it as

Ke-g= [L]ﬂ*( 300 )+D:fl*(g)
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This makes obvious in a direct way that 8g = FL* (8G4;/3p°) is a Noether’s transformation.
At this point we have the following result:

Proposition 2. Let Gp be the conserved quantity of a Noether's transformation. The
following statements are equivalent:

(i) GL is projectable t0 a function Gy in Py such that Kz - Gy = 0 (or equivalently
K, Gy ::;1') 0} (and then 8q = FL* (BGH/apU) is a Noether's transformation with
P :

conserved quantity Gp..) )
(i) Among the family of Noether's transformations whose conserved quantity is Gy, there
is one transformation §¢ which is projectable to P;. )

Now there is a subtle point, Is there a-Hamiltonian symmetry 8y such that dyg =
#Gyu/3p®? As it is explained in the appendix, this is true only when (A.2) is also satisfied,
and so we have the following result:

Proposition 3. Let Gy be a function in P». The following statements are equivalent:

i) Ki-Gu=0.

(ii) Gy is the generator of a Hamiltonian symmetry transformation such that g =
FL*(8yg), where dug = Igp, H}, is a Noether’s transformation with conserved
quantity FL*(Gu).

This result can be directly generalized to any Lagrangian of order &£ > 2: the condition
for a function Gy in P, to be a generator of a Noether’s Hamiltonian symmetry is

Ki1-Gu=0. (4.4)

To summarize this section, we have started with a general Lagrangian Noether's
transformation and we have examined some conditions to be satisfed by it, each one
more restrictive, the latter being that of a Noether’s Hamiltonian symmetry transformation.
Therefore a conserved quantity of a Noether’s transformation lies in one of the four different
cases depicted by the previous propositions.

5. Application to the particle with curvature

Given a path x(¢) in Minkowski space R4, we write x, for its nth time derivative, and

e, for the vectors obtained by orthogonalizing—if possible—the vectors x;, ®z,.... For
instance,
e =m (5.1a)
fr
€y =Ty — ( ?.el) (51b)
(6161)
(w3ez)  (x3e1)
e =x = er. 5.1¢c}
T ) (ee) (

We also write A, for the Gramm determinant of the vectors @; ... %,
A, = det((@:;)) 1< jn -

For a relativistic particle we consider a Lagrangian proportional to the curvature of its
world line [2, 22, 25, 26],

NEvY - V(@z ) (@axs) —~ (@22)?
Ay (z1z1)

L=«

(3.2}
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where o is a constant parameter,
Obviously er, ez, ez are mutually orthogonal. Moreover,

= =22 = ==
(er7) = (&2€3) = A (e223) A
Az
(esx;) = (e3e3) = v
We shall also nead
} Aq Ay fAY)
82—€3+(2—A2 E)BZHA_%EI-
The partial Ostrogradskii’s transformations are
P=TRY D P, B P =TT ®RY)

~0
(Zo, 1, T2, 23} > (To, 1, Z2.D)
Al
(m()v Ly, T2, po) = (m(h m]: pO’p )

where the momenta are defined by

aL o
-1
— = . 5.
a2 ™ € (5.3)
gL o :
0 =1
= —-Dp = —— 5.4
p am] fp »\/A_z 3 ( )
for the last computation we have used

BL_- o (A18+AZE)
bz JA \28; 0 AT )

More precisely, Py is not all T3(R?), but the open subset defined by Ay > 0, A, > 0.
Then the vectors & and @, are linearly independent, and so are e; and e;. Similar remarks
hold for £ and Py

The singularity of the partial Ostrogradskil’s transformations is due to the singularity
of the Hessian matrix

3L 9p°  ap'

= X, 3Ty dx®s O

In our case,

- =__a_(n _ € €lv €20 €2 ) (5.5)
T VAT Slee) Jleen) e lezer)

whose rank is 4 — 2 in its domain.
The intermediate evolution operators are

3 a oL @8 aL d
G o s s () 2

dxg day 33303_130 dx ap!
3 8 o o (A Ay )) 3
=T — + T — [ Zey+ —Le )| = (6
N ome | om (p+,/_‘A2 (A%e’+2alez o oY
Ko =@ a2 D
e = "81:0 Loz, 8z, dag 8p°
a b 9
=& — + La— + T3—— - - (5.7)

32‘:0 3."31 3332
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and the Euler-Lagrange equations (in Fg) are

5.1. Constraints

The energy in P is E; = Pz} + (f)]:cz) — L{zg, 1, z2) = (P°x1), so we take as a
Hamiltonian .
H = (p%). (5.8)

Due to the rank of the Hessian matrix W, the definition of f)l—the last partial
Ostrogradskii’s transformation—introduces two constraints in the Hamiltonian space Ps.
These constraints are obtained immediately from the relations satisfied by ez, and we take
them as

= (p'x;) (5.9a)
1 1.1 o?
w2=§((pp)— ) (5.9%)

(z12y)

We have
{d, ¥} =29} .

Proceeding with the Hamiltonian stabilization we obtain secondary constraints ]
¢3 = {03, H} = —@"=)) = —-H (5.10a)
¥2={yi, H} = —@"p") (5.108)
for which
, ( (¢}, 03} (0}, V3 )=(—¢% v3 )
{‘l’z’ 952} {‘;i’zls ‘pz} —sz (—ml—fé-l-)f¢2
Finally, we obtain a tertiary constraint
¥3 = {¥3, H} = @°p% (.11)

whereas {¢2, H} = {¢3. H} = 0. The Poisson bracket of ¥ with the primary constraints
is zero.

Notice that all the constraints are first class, but the Poisson bracket between the two
secondary constraints is the tertiary constraint: '

(@ vi =vj.

The constraints in P, are obtained by applying the operator K; to the Hamiltonian
constraints. We have '

K1-¢y = ¢ = —(p"z))
K- 2 = 1,[/1 = —(pp =“;_(poez)

Kogi= Sy Ry
K.-¢§=(p°p°)—EZ;:;%—(‘;‘:)E@& @' = m

Ky-y3 =0.
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Instead of defining ¥} = K -¥Z we prefer, for simplicity, to use ¥? = (p%p°), which defines
the same constraint submanifold. With this convention, 7} (¢;*") = ¢!, Fr(¥i™h) = ¢i.

Similarly from the intermediate constraints ¢, ¥ and ¥] we obtain the Lagrangian
constraints:

Kool =0  Ko-¥l=vyi=0"%%  Ko-y?=0.

Again Fp (01" = ¢} Fs™h = ¥
From the expression of the Hessian matrix it is obvious that Eer W = {e,, e,;}. Indead,

Bl aopl

Al Ayl .

5.2. Hamiltonian gauge transformations

We are going to show that the model does not have any Hamiltonian gauge transformation
constructed from a generating function.

According to the appendix, we look for a generator of the form (A.3), and apply the
algorithm (A.4). We first consider

Go= o' + g (5.12)
with f and g functions to be determined.
Then
Gr=—f¢* — gy’ + f'¢' + g'v! (5.13)

for certain 77, g’. We compute
@', G} =(f —(#'. fHe* — (g +{#', eh¥* +prc

a?

(z121)?

{4’1, Gi} = _(

and so to fulfil the test (A.4¢.c) the expressions in parentheses must be weakly vanishing.
Now

Gr=f& + gy’ + ({F, HY = F¥* + (g, H} — gV¥* + f'¢' + "y (5.14)
for some f”, g”. The test for G, requires to compute
9!, Gl =o', g’ + (0. (£, HI — f1 = {F HY+ f) ¢

+({¢'. {g, H} — g'} + {g. H} ~ g') w* + pFC

g+ wr’,f}) &+ (f — (W, gHu? + prC

o®

W, G} = (v, ghy’ + ({w‘, (£ H) = FH+ s (e HY = g’)) 9?
+ (' e, H} = &'}~ {f B} + 1) ¥ + prc.

In order that these expressions be strongly primary first-class constraints, the coefficients
of ¥, ¢* and 2 must be weakly vanishing. From the coefficients of 1> we obtain in
particular that {¢!, g} and {1/, g} are weakly vanishing. Looking at the coefficients of >
in the test for ¢7; we obtain that f and g are weakly vanishing, so that the generator & is
strongly vanishing: it becomes ineffective, since it leaves all solutions invariant.
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5.3. Lagrangian gauge transformations

The model has two independent Noether's gauge transformations.

One of them is just the reparametrization. It arises easily from the fact that ¢} =
Ko-$] = 0, i.e. one of the primary Lagrangian constraints is identically vanishing. This fact
yields a Noether’s transformation with vanishing conserved quantity, Gr = 0. According
to the discussion on these transformations, we obtain a gauge transformation

Sz = &(t)x : (5.15)

since yy = xp; this is just a reparametrization.
The other transformation comes from Gy = &(t)¥2 = £(t)(p"p?), for which G, =

s = s@)(@°D°). Then
Ko Gi = £(0)¥;
so according to (3.2} we have r = £(), and since yy = f)l we obtain
sz =2:)p° + 2(0)p" . (5.16)

See [28] for a geometric interpretation of this transformation.

It can be shown that these transformations coincide with those obtained in [27] by
considering a first-order Lagrangian when the supplementary variables are written in terms
of derivatives of . ’

Notice that these transformations and their generating functions G are projectable to
the Hamiltonian space; however, as we have explained at the end of the preceding section,
they do not yield Hamiltonian gauge transformations, as it can be easily checked.

6. Other examples

Here we consider two simple examples of second-order singular Lagrangians to illustrate
our procedure.

() L{xg, x1,x2) = x2.

The momenta are p! =1 and p% = 0.

There are two Hamiltonian constraints, ¢i = 1 — p! and ¢35 = p°. In the intermediate
space there is one constraint, ¢} = p°. And finally there are no Lagrangian constraints.

Let us look for 2 gauge Noether's transformation ‘generated’ by a function Gy = &(2) p°.
We obtain Kp - Gy = 0, so it satisfies the required condition, and the transformation is
8x = F5{8G1/ap®) = e(z); this says that x(¢) is completely arbitrary, which, of course, is
a consequence of the fact that [L] = O identically.

Notice that Gy projectable to a function Gy = &(p! — 1) -+ £p° in the Hamiltonian
space. For this function K - Gy = 0, and so in this case we obtain a Hamiltonian gange .
transformation, 8x° = g, x! = &, 8p° = §p' = 0.

(i} L(xo, %1, x2) = 1(x1x1).

This is a first-order Lagrangian, but let us treat it as a second-order one. The momenta
are p* = 0 and p° = x,.

In this example there are no Lagrangian constraints. In the intermediate space there is
one constraint, ¢} = p°. There are two Hamiltonian constraints, ¢} = p' and ¢ = x; — p°;
they are second class. In the intermediate space we have ¢ = x; — p® and ¢7 = xp. And
finally we obtain two Lagrangian constraints, ¢} = x2 and ¢3 = x;.

As usual let us look for a function Gy = fxo. Now we find that K - Gy =
(Ko« )%y + Fg(f)xa; this is to vanish on the primary Lagrangian constraint submanifold,
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so necessarily we have F7(f) =~ 0, G1 = 0 and therefore there are no Noether’s gauge
transformations; this was expected since the solutions of the equations of motion are paths
of constant velocity.
Now let us look for the rigid Noether’s transformations of this Lagrangian. Due to the
constraints of the intermediate space Py, we try a function Gr{¢, xg, x1). We obtain
3G 4Gy 3Gy

= —t ek
Ko-Gi= ot + dxg ax1

Since this has to vanish on the surface x; ~ 0, we obtain the condition
dG1/8t + x18G1/0xp = 0, from which Gy = g(x17 — xp, x1); this yields two independent

transformations, which are computed using the other term, the coefficient of x5, r =
9G1/8x,.

7. Conclusions

In this paper we have studied Noether’s symmetries for higher-order Lagrangians. This
study is performed by using some intermedjate spaces between those of Lagrangian and
Hamiltonian spaces. We have seen that a conserved quantity of a Noether’s transformation
can be characterized in terms of a function in the first intermediate space satisfying a certain
condition; this is also useful to find gauge transformations when the Lagrangian is singular,

The issue of projectability to the phase space of the Lagrangian conserved quantities as
well as of the iransformations themselves becomes quite a lot more involved than in the
first-order case, To get a clearer pictare of the subject we have made a thorough study of the
second-order case, where the structures of the general higher-order case aiready show up.
As a consequence of this study, we present a variety of cases covering all the possibilities
with regard to the projectability (or partial projectability) of the quantities invalved,

We give also some examples that illustrate several cases that appear in our analysis.
In particular, the example of section 5 does not possess Hamiltonian gauge generators, in
spite of the fact that it has Lagrangian Noether's transformations which are projectable to
the Hamiltonian space.
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Appendix. Gauge transformations in the Hamiltonian formalisin

In this appendix we recall some resuits from [11]. We call dynamical symmetry
transformations those transformations which map solutions of some equations of motion
into solutions. :

In the Dirac’s Hamiltonian formalism, the necessary and sufficient condition for a
function Gyulg, p; t) to generate, through Poisson bracket,

8f ={f, Gu}

an infinitesimal dynamical symmetry transformation is that Gy be a first-class function and
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satisfy
9Gu . ’ .
{Gy, H} + TR PFC (A.la)
{pFC, Gy} = PFC (A.1B)
P

whege PU? is the submanifold defined by all the Hamiltonian constraints in phase space,
PFC stands for any primary first-class Hamiltonian constraint, and the notation f = 0 means
I ﬁ Oanddf ’E* 0 (Dirac’s strong equality). M

This conditions can be equivalently expressed in a more compact form:

K-Gg=0
v
where V{? is the surface defined by all the Lagrangian constraints in velocity space and
K is the time-evolution operator K for first-order Lagrangians—see, for instance, [12].
Though in [11] this is proved for first-order Lagrangians, it can be shown that this is also
true for higher-order Lagrangians. More precisely, the condition is

Kiy Gy =0 ) (A.2)

()
Pk—i

where P,ff i is the surface defined by all the constraints in the space F;_;.

More particularly, we call a gauge transformation a dynamical symmetry transformation
which depends on arbitrary functions of time. The genera! form for a generator of a
Hamiltonian gauge transformation, depending on one arbitrary function, can be taken as

Gulg, pi) =Y _€"P () Gilg, p) , (A3)

k20

where €¢™* is a kth primitive of an arbitrary function of time «.

To find a gauge generator, the characterization (A.2) or (A.1} of Gy as a dynamical
symmetry generator splits yielding the following constructive algorithm, where strong
equalities have been changed to normal equalities {11]:

Go = PFC (A4a)

{Gk, H} + Gy = PFC (A.4b)

{pFC, G} = PEC. {A.dc)
P ;

It is noticed, therefore, that though there may be second-class constraints, the generators of
Hamiltonian gauge transformations are built up of first-class constraints, and. according to
(A.4a), are headed by a primary one. .

Some results on the existence of a basis of primary first-class Hamiltonian constraints
each one yielding a gauge transformations are known: this is guaranteed under some
regularity conditions [10], namely the constancy of the rank of Poisson brackets among
constraints and the non-appearance of ineffective constraints. If these Hamiltonian gauge
transformations exist, their pull-back constitutes a complete set of Lagrangian gauge
transformations.

On the other hand, as we have said in the introduction, there are examples of first- -
order Lagrangians for which Hamiltonian gauge generators do not exist, whereas they have
Lagrangian gauge transformations [13]. In this paper we have seen that this also happens
for a relativistic particle with Lagrangian proportional to the curvature.
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