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Abstract. Noether’s symmetry transformations for higher-order Lagrangians are studied. A 
characteriwtion of these transformations is presented, which is useful for finding gauge 
transformations for higher-order singular Lagrangians. The case of second-order Lagrangians 
is studied in detail. Some examples that illustrate our results are given: in panicdar, for 
the Lagrangian of a relativistic panicle with c w a t w ,  Lagrangian gauge transfamtions are 
obtained, though there are not Hamiltonian gauge generators for them. 

1. Introduction 

Among the symmetries of a classical dynamical system described through an action 
principle, Noether’s symmetries [3, 18, 23, 241 (i.e. those that leave the action invariant, up 
to boundary terms) play a central role. They are the usual symmetries considered in systems 
of physical interest, their characterization is very simple, and, most importantly, they are 
the kind of symmetries that we must consider when dealing with quantum systems; this is 
clear from the path-integral formulation, where the main ingredient is the classical action 
together with the measure in the space of field configurations. 

Here we will consider continuous symmetries. either rigid or gauge. In the latter case, the 
infinitesimal transformation will depend upon arbitrary functions of t i m e i n  mechanics-or 
spacetimein field theory. In order for these gauge transformations to exist the Lagrangian 
must be singular. In a firs-order Lagrangian this means that the Hessian matrix with respect 
to the velocities is singular; it is so with respect to the highest derivatives in a higher- 
order case. Constants of motion appear associated to rigid symmetries whereas first-class 
Hamiltonian constraints appear associated to gauge symmetries [SI; in this case Noether’s 
identities also appear. 

For reguIar Lagrangians the constant of motion associated with a Noether’s symmeny 
is, in fact, the generator of the symmetry when expressed in Hamiltonian formalism. 
For singular Lagrangians this statement is not always true: a Lagrangian Noether’s 
transformation may not be projectable to phase space. 

In [l,  31 several aspects of Noether’s symmetries for first-order Lagrangians have 
been studied; in particular, the projectability of these transformations from Lagrangian 
to Hamiltonian formalism. Let L ( q , q )  be a first-order Let us explain this point. 
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Lagrangian and FL its associated Legendre transformation mapping velocity space to 
phase space: n ( q . 4 )  = (q,$), where $(q,cj) = aL/aq are the momenta. Given a 
Noether’s symmetry 6q(r ,  q. 4) of L, the corresponding constant of motion G L ( ~ ,  q ,  4) 
tums out to be projectable to a function G ~ ( t , q ,  p )  in phase space. This means that 
there is a function GH whose pull-back =*(GH) through the Legendre transformation 
is GL; in other words, G ~ ( t . q , $ )  = G L ( f , q , q ) .  (Notice that, for a singular 
Lagrangian, not every function in velocity space is projectable to a function in phase 
space, due to the singularity of the Legendre transformation.) Then there is a simple 
characterization of the functions Gk that correspond to a Noether’s symmetry [13]. 
Finally, the function GH acts as a kind of generator For the Noether’s symmetry 6q. 
If the functions 6q(r ,q ,q)  are projectable to phase space, then GH can be chosen 
(between the functions whose pull-back to velocity space is GL) such that it generates 
the symmetry in the same way as for regular Lagrangians, i.e. through Poisson bracket; 
otherwise, GH still generates the Noether’s symmetry though not in such a simple 
way. 

In this paper we extend these results to higher-order Lagrangians. For these Lagrangians 
there exists a Hamiltonian formulation, due to Ostrogradskii; in the case of singular 
Lagrangians, Dirac’s theory may be applied, and, for instance, the search for generators 
of symmetry transformations [ 111 is performed as for the first-order case. As we will see, 
when we look for Noether’s symmetry transformations of a higher-order singular Lagrangian 
the situation is rather different from the first-order case. The most remarkable difference is 
that in the higher-order case the constant of motion GL is not necessarily projectable to a 
function GH in phase space. 

To perform this analysis we make use of the results of [2, 51. As it will be 
summarized in section 2, given a kth-order Lagrangian there are k - 1 intermediate spaces 

3 0  3t-! PO -+ PI -+ . . . Px-1 -+ PX between those of Lagrangian (PO) and Hamiltonian (Pk) 
formalisms, where 30, . . . , &-I are the ‘partial Legendre-Ostrogradskii’s transformations’. 
So the study of the projectability of a Lagrangian quantity (in PO) to phase space (Pk) 
is more involved. In particular, unlike the first-order case, the constant of motion of 
a Noether’s symmetry, although being projectable to the intermediate space PI, is not 
necessarily projectable to the phase space. 

Our characterization of Noether’s transformations is especially relevant when looking 
for gauge transformations. For instance, in [I31 there is a Lagrangian not possessing 
Hamiltonian gauge generators, but such that our method provides Lagrangian gauge 
symmetries for it. Another example is given by the Lagrangian of a conformal particle [16]: 
it has a Hamiltonian gauge symmetry that~cannot be written in a covariant form despite the 
covariance of the Hamiltonian constraints; in this case our method allows us to construct 
a covariant Lagrangian gauge symmetry. In this paper a similar behaviour is shown to 
occur in a second-order Lagrangian, namely the curvature of the world-line of a relativistic 
particle: it will be shown that it has no Hamiltonian gauge generators, but two independent 
Lagrangian gauge transformations will be obtained for it. 

The paper is organized as follows. In section 2 some results on higher-order Lagrangians 
are summarized. In section 3 Noether’s transformations for higher-order Lagrangians are 
studied, and a characterization of them is introduced. In section 4 the case of second-order 
Lagrangians is developed in full detail. As an application of these results, in section 5 the 
example of the particle with the curvature as a Lagrangian is studied; other examples are 
also studied in the next section. The paper ends with a section with conclusions and an 
appendix about Hamiltonian symmetry transformations. 
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2. Higher-order Lagrangians 

Here we present some results and notation from [E]. See also [Z, 7,20,29] for higher-order 
Lagrangians and higher-order tangent bundles. 

Let Q be an n-dimensional differentiable manifold with coordinatest q = qo. On its 
higher-order tangent bundles T'Q we consider natural coordinates (40, . . . , q?). A kth-order 
Lagrangian is a function L:  T k Q  + R. 

The Ostkogradskii momenta are 

where D, = a/at + Cl q;+la/aq, is the total time derivative. Equivalently, 

Notice that depends only on go,. . . , q w l - i .  
In coordinates the Euler-Lagrange equations can be written [L],(,, = 0, with 

= ff - (-1)K-lqwW 

where 
aL a g o   ago^ 
aqo ago a42k-2 

ff = - -ql-  - .. . -q3-1- 

and W is the Hessian matrix with respect to the highest-order velocities, 

~~ 

azL w=-, 
a q k  a s k  

Introducing the momenta step-by-step, for 0 < r < k an intermediate space P, can 
be defined, with coordinates (40.. . . , qzk-,-r; po ,  . . . , p r - I ) .  In particular, the Lagrangian 
and Hamiltonian spaces are PO = TZk-'Q and Pk = T*(Tk-'Q).  Observe that Pk has a 
canonical Poisson bracket, for which {q:, p ; )  = 8;:s:. 

The partial Ostrogradskii's transformations F?: P, + Prtl can be introduced, with local 
expression 

(2.3 0 FASO.. .. 7 9%-1-7: PO. ..., p r - 9  = (40. ,. , .q21-2-r: p , ..., Pr-', 2'). 
The 'total' Legendre-Ostrogradskii's transformation is FL = Fk-1 0. .  . c Fo: PO + PR. 

On P, there exists an unambiguous evolution operator K,, which is a vector field along 
Fr, K,: P, + T(Prt,), satisfying certain conditions 115, theorem 41. In coordinates it reads 

(2.6) 

t Indices of coordinates am usually suppressed. 
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The various evolution operators are connected by 

X Grhcia and J M Pons 

Kr-1 . T ( g )  c-1 (Kr ' g) (2.7) 
for 1 < r < k - 1; here T(g) denotes the pull-back of g through Fr. 

These intermediate evolution operators act as differential operators from functions 
in Prtl to functions in P,. They can be extended to act on time-dependent functions; 
for instance, given a time-dependent function in P I ,  g(t ,  40,. . . , q w 4  PO), 

By computing KO. g - D,T(g) using the chain rule an interesting relation is obtained 

KO . g = [LIG - + JAqk). (2.8) (3 
We assume that W has constant rank n -m. Then the 3, have constant rank 2kn - m, 

since 
aF - ( - p - ' W  

aq2+ 
and PJ:l := Fr(Pr) is then assumed to be a closed submanifold of P,+I locally defined by m 
independent primary constraints The primary Hamiltonian constraints-those defining 
P f ) - c a n  be chosen to be independent of po, . . . , pkM2.  Then the primary constraints of 
P, can be obtained by applying K, to the primary constraints of Pr+l [15, proposition 91: 

This is also me for r = 0. Indeed one can write evolution equations on each space P, 
(0 < r < k - 1); these equations are equivalent to the Euler-Lagrange equations. The first 
consistency conditions for these equations are just the constraints 4: defined above. 

4: := K, . . (2.9) 

The primary constraints yield a basis for Ker W: 

which can also be written as (-l)k-rT-l (EJr$//8pr-'), provided that the +f are defined 
by (2.9). Notice that yw depends only on (qo, . . . , qk), Then, a basis for Ker T ( 3 , )  is 
constituted by the vector fields 

These can be used to test the projectability of a function in P, to P,+I: r; . g = 0 .  
We notice also the commutation relations 

r; . ( K ,  . g) = ?(r;+l. g) 

for 0 < r < k - 1, where ri is understood as ri . g = (g ,  @[). 

Lagrangian constraints as 
Using the null vectors yLI, (2.8) and (2.9), we obtain, in particular, the primary 

4; = KO. 4; = (--l)"-'[L]y,, = ( - l )k - l c i yLI .  
There is a Hamiltonian function in Pk, which is a projection of the Lagrangian energy 

function EO(q0, ' .  . ,q2-1) = Coq1 + . . . + jk- 'q& - L(q0,. . . , q k ) ;  it can be chosen to be 
in the particular form 

k-2 
ff = prqrtI + h(q0, , . . v qk-1; p K - l ) .  (2.10) 

7=O 
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The usual presymplectic (Dirac's) analysis can be performed in Pj". In fact, there are 
stabilization algorithms for the dynamics of the intermediate spaces and all the constraints 
in P,-not only the primary ones-are obtained applying K, to all the constraints in P7+1 
[15, theorem 81. This result holds~indeed at each step of the stabilization algorithms. 

3. Noether's transformations 

An infiniksimal Noether's symmetly [3, 18, 23, 241 (see also u4-6, 9, 19, 211) is an 
infinitesimal transformation Sq such that 

6L =D,F 

for a certain F .  It yields a conserved quantity G = zf:: TSq, - F ,  where Sq,  = D;Sq, 
since ~~ 

[LIBq + D,G = 0 

this is proved using the Euler-Lagrange equations (2.3) and the  relation between the 
momenta. 

So let us consider a Sq(t, 40, . . . , qw-I ) ,  &d a function GL(t ,  40, . . . , qW-1) such that 

(3.1) [LIS4 + DCGL = 0 .  

Notice that the highest derivative in this~relation. q2K, appears linearly, and its coefficient is 

aGL 
342k-1 

(-1)k WSq - - = 0 

so, contracting with the null vectors yP we obtain that 

rrr . GL = 0. 

That is to say, GL is projectable to a function GI in PI, 

GL = ~ ( G I ) .  

Now, using (2.8), (3.1) becomes 

Looking again at the coefficient of qw in this expression. we obtain 

and so the parentheses enclose a null vector of W :  

for some rP(l ,  40, . . . , qa-I). Substituting this expression we obtain 

KO. GI+  ~ r P ( u y P )  = 0. 
P 

So we have proved the following result: 

(3.2) 
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Theorem 1. Let Sq(t, 90.. . . , qzK-1) be a Noether's transformation with conserved 
quantity GL. Then GL is projectable to a function GI in PI such thatt 

X Grcicia and J M Pons 

&.GI zz 0 (3.3) 
P,"' 

where Pt) is the primary Lagrangian constraint submanifold. 

functions such that KO. GI = - E,, rP(uylr) then 
Conversely, given a function Gr(i, 40, . . . , qa-2. po) satisfying this relation, if rP are 

(3.4) 

is a Noether's transformation with conserved quantity GL = ~ ( G I ) .  

Notice that 6q is not necessarily projectable to PI, not to mention to phase space Pk; 
in fact, the projectability of 6q is equivalent to the projectability of the functions rfl. 

There is also a certain indetermination in the functions r" [14]. For instance, if there are 
at least two primary Lagrangian constraints then one can add convenient combinations of 
these constraints to the r p ,  namely, an antisymmetric combination of the primary Lagrangian 
constraints, in a way that (3.2) is still satisfied; however, this change corresponds to adding 
a trivial gauge transformation [17] to the original transformation, and so we still have 
the same transformation on-shell (i.e. for solutions of the equations of motion). Another 
interesting case occurs when the primary La-mngian constraints are not independent; in 
[14] the relation between this fact and Noether's transformations with vanishing conserved 
quantity is studied. For instance, one of the primary Lagrangian constraints, say x = KO .+, 
may be identically vanishing, and  so^ for GI = 0 any value for the corresponding r is 
admissible to fulfil KO . GI + r x  = 0. This yields a Noether's transformation 

For instance, r might be an arbitrary function of time, thus yielding a gauge transformation. 
Summing up: unlike the case of a regular Lagrangian, where there is a one-to-one 
correspondence between Noether's transformations and conserved quantities, for a singular 
Lagrangian in general there is a whole family of Noether's transformations associated with 
a single conserved quantity. 

4. Projectability of Noether's transformations in the case of second-order 
Lagrangians 

In the first-order case, k = 1, the results of the previous section tell us that GL is projectable 
to the phase space PI = T*Q. As we will see shortly this is not true for a higher-order 
case k > 2. This means that there is no guarantee that we can write the conserved quantity 
in canonical variables, let alone to get the Noether's transformation in phase space: as we 
can read off from (3.4), this is not always possible even for the first-order case. 

In order to clarify both issues, projectability of GL and projectability of 6q, which in 
fact we will see are related, we will perform a thorough study of the case k = 2, which will 
already show the basic features of the ieneral picture for any k .  

t f 5 0 means f = 0 on M (Dimc's weak equality). 
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Let us consider from now on the case k = 2. A .basis for Ker T(%) is given 121 by 
the vector fields 

The index pi is a part of the indices pL,that corresgonds to the splitting of the primary 
~Hamiltonian constraints 6;’ into the first-class ones, &I, and the second-class ones &’. The 
function 7,; can be written as ‘I,; = a@/ap’, where 42”’ = {&;, H) are the secondary 
constraints in phase space (here pi and pz run over the same set of indices, but-are 
distinguished in order to label primary or secondary constraints). 

It is easy to prove that the vector fields eo are projectable to the intermediate space P1. e‘ In fact, since the definition of Ker T(%) requues that F;; ( q ( p o ) )  = 0, we get immediately 
I=:; o q = o rh,, (as operators on functions of the intermediate space). 

Now we can check the condition of projectability of GL to Pz. Since I?:, . GL = 0, we 
only have to check whether . CL vanishes: 

F;; . cL = ?;; . q(cr) = q(r;; . = r;; . ( K ~ .  cI) 
= i-;; . (-rP(aye)) = -(ro . rU)(orye) e; 

(4.1) = -a((r;; : r”)y,) = -a(ri; . (rpy,)) = -a(re; 0 . 6 q ) .  

Notice that the projectability of GL to PI depends on S q .  In this argument we   have used 
several commutation properties of the T’s, but there are two details to point out. 

First, r;; . (ay,) = 0; this is a consequence of a more general result: 

-r:. (uv,) = %*c&, &) 

whose proof is immediate: 

-r:.(ay,)= r:.(Ko.#)=q(rt .w1 . ~ ; ) ) = q c ~ ~ ( r ~ . ~ ; ) ) = q c q ( K , ~ ; i ) .  
In particular, taking one of the consuaints to be first class, {$;, 6;) = 0, the result is zero. 

Second, (Fi; . re)yg = r,,, . ( r ,  ye ) ,  which is trivially true since the vector functions 
ye are projectable. 

Therefore we have obtained an expression for ?i; .GL, and in general it can be different 
from zero. Notice that a sufficient condition for the projectability of GL to P2 is that 
6q be projectable to P I .  Notice also that the quantity E(%,, 6 q )  is insensitive to the 
indetermination of the functions re which is mentioned at the end of the previous section. 

Now we are going to consider that the conditions are met for the projectability of GL to 
a function GH in 4, FL*(GH) = GL. The function GH has a certain degree of arbitrariness 
because we can add to it arbitrary combinations of the primary as well as the secondary 
constraints in Pz. Let us extract consequences from our assumption. The function 3I;(G”) 
is one of the possible functions GI considered in the previous section and therefore we can 
apply to it the results already obtained there. In particular, 

Pi” 

But since KO o 3; = o K ,  
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which means that 
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Here #‘ and q5p are respectively the primary and the secondary constraints is PI (remember 
that ~2 runs over the same indices as p;). Notice that q(@‘) = 0 and q(q5p) = (ay,;). 
Therefore, 

KO . ~ ( G H )  = q ( K i  . GH) = G(#)@Y,;) 
and, according to the results of the previous section, the transformation 

is a Noether’s transformation which is projectable to PI 
If we define 

GI = ~ ( G H )  - U:’@:’ 

since a@$ lapo = yg;, then 6 q  = 5 (aGI/apo) and 

where we have used Ko@f’ = -(ay,;). 
Proposition I .  Let GL be the conserved quantity of a Noether‘s transformation. The 
following statements are equivalent: 
(i) GL is projectable to a function GH in P2. 
(ii) GL is projectable to a function GI in PI such that KO . GI = 0 (and then Sq = 

(iii) Among the family of Noether’s msformations whose conserved quantity is GL. there 
is one transformation 6q which is projectable to PI. 
The proof of the equivalence between the first and the second items is a direct 

consequence of the discussion preceding the proposition. Their equivalence to the thud 
item follows also immediately from (4.1). 

Now let us consider the case when Sq is not only projectable to PI but also to 4. This 
means that U:’ in (4.2) is projectable to Pz, up’ = P up’ In such a case, taking into 
account that K ,  . #? = +?, the function GL := GH - 

KO . GI 0 

(aGI/apo) is a Noether’s transformation with conserved quantity GLJ 

’ ( 2; ,2 u2 & satisfies 

KI. GL 0 (4.3) 
P:“ 

and Sq can be expressed as 

which explicitly shows the projectability of Sq to Pz. 

(4.3) can be rewritten as 
There is still another way to write (4.3). If we define K E  = F; o K ,  = KO o q, then 

KE. GL = 0. 
The definition of KE allows us to rewrite it as 
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This makes obvious in a direct way that 6q =-E* (aGL/apO) is a Noether's transformation. 

Proposition 2. Let GL be the conserved quantity of a Noether's transformation. The 
following statements are equivalent: 

(i) GL is projectable to a function GH in P2 such that KE . GH = 0 (or equivalently 
Kl . GH E 0) (and then 6q = 32* (dGH/apo) is a Noether's transformation with 

conserved quantity GL.) 
(ii) Among the family of Noether's transformations whose conserved quantity is GL, there 

is one transformation Sq which is projectable to 4. 
Now there is a subtle point. Is there a~Hamiltonian symmetry 6" such that 6 ~ q  = 

aGH/apo? As it is explained in the appendix, this is true only when (A.2) is also satisfied, 
and so we have the following result: 

Proposition 3. Let GH be a function in 4. The following statements are equivalent: 

(i) KI . GH = 0 .  
(ii) GH is the generator of a Hamiltonian symmetry transformation such that 6q = 

R * ( 6 ~ q ) ,  where S H ~  = [qo, If), is a Noether's transformation with conserved 
quantity =*(GH). 

This result can be directly generalized to any Lagrangian of order k > 2: the condition 

At this point we have the following result: 

P,'" 

for a function GH in Pk to be a generator of a Noether's Hamiltonian symmetry is, 

Kx-1 . GH = 0. (4.4) 
To summarize this section, we have started with a general Lagrangian Noether's 

transformation and we have examined some conditions to be satisfied by it, each one 
more reshictive, the latter being that of a Noether's Hamiltonian symmetry transformation. 
Therefore a conserved quantity of a Noether's transformation lies in one of the four different 
cases depicted by the previous propositions. 

5. Application to the particle with curvature 

Given a path x(t) in Minkowski space Rd, we write x, for its nth time derivative, and 
e, for the vectors obtained by orthogonalizing-if possible-the vectors 21. 22, . . . . For 
instance, 

el = X I  (5.1~) 

(5.lb) 

(5.1~) 

We also write An for the Gramm determinant of the vectors X I  . . .x,: 

A, = det((xizj))~<;.j<~ 

For a relativistic panicle we consider a Lagrangian proportional to the curvature of its 
world line [2, 22, 25, 261, 

(5.2) 
6 (XIX')(X222) - ( X l X d 2  

A I  (XIXI) 
L =a--- = 1y J 



7190 

where 01 is a constant parameter. 
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Obviously e l ,  ez, e 3  are mutually orthogonal. Moreover, 

A3 
Az 

(e3x3)  = (e3e3) = - . 

We shall also need 

The partial Ostropdskii's transformations are 
71 PO = T3(Rd) 3 PI -+ Pz = F ( T ( R d ) )  

( X 0 . X 1 , ~ Z r X 3 )  H ( x o , x l l x * ~ ~ o ~  
(xo, 21,ZZ,PO) H (20, XI. P 0 , 8 9  

where the momenta are defined by 

(5.3) 

(5.4) 

for the last computation we have used 

More precisely, Po is not all T3(Rd), but the open subset defined by AI > 0, A2 > 0. 
Then the vectors xI and x2 are linearly independent, and so are el and e2. Similar remarks 
hold for PI and PI. 

The singularity of the partial Ostiogradskii's transformations is due to the singularity 
of the Hessian matrix 

a2L aso a@ 
ax2ax1 ax3 ax2 

w := - = -- = -_ 
In our case, 

01 

- .,& 
whose rank is d - 2 in its domain. 

The intermediate evolution operators are 
a 

a a a 

a a a aL a 
azo ax, axz axoapo 

a a a 
axo axl ax2 

KO : = 51-  +XI- + ~ j -  + -- -. 

~~ =xI-+xz-+xj- 
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and the Euler-Lagrange equations (in PO) are 

5.1. Constraints 

The energy in PI is E I  := (POXI) + @x2) - ~ ( r o ,  X I ,  22) = (pori), so we take as a 
Hamiltonian 

H = @'XI). (5.8) 
Due to the rank of the Hessian matrix W, the definition of $-the last partial 

Ostrogradskii's transformation-introduces two constraints in the Hamiltonian space 4. 
These constraints are obtained immediately from the relations satisfied by ez, and we take 
them as 

(5.9a) 

(5.9b) 

We have 

{$;,*;) = 2*;. 
Proceeding with the Hamiltonian stabilization we obtain secondary constraints 

4: = ($1, H] = -(POXI) = -H 
$r: = [$I;, H }  = -(po P )  

(5.10a) 
(5.10b) 

for which 

Finally, we obtain a tertiary constraint 

*; = w;, H) = (POPO) (5.11) 

with the primary constraints 

Notice that all the constraints are first class, but the Poisson bracket between the two 

whereas (&, H) = {K. H} = 0. The Poisson bracket of 
is  zero.^ 

secondary constraints is the tertiary constraint: 
2 - '1 (&, $2) - *z.  . 

The constraints in PI are obtained by applying the operator K I  to the Hamiltonian 
constraints. We have 

K t  .$; =: 6;  = - ( P O X I )  

K1 . $rj =: @; = -(p 0-1  p ) - - ---(Po,*) ff a 
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Instead of defining @; = K ]  .@: we prefer, for simplicity, to use +? = (popo), which defines 
the same constraint submanifold. With this convention, ?(&’) = 4, q(+F’) = +I. 

and we obtain the Lagrangian 
constraints: 

X Grhcia and J M Pons 

Similarly from thc intermediate constraints @;, 

KO .4; = 0 KO. I@; =: @; = @,“f) KO. +; = 0. 

Again C(@f+’) = 4; q(+’ft’) = +;. 
From the expression of the Hessian matrix it is obvious that &r W = (el, e>). Indeed, 

5.2. Hamiltonian gauge transformations 

We are going to show that the model does not have any Hamiltonian gauge transformation 
constructed from a generating function. 

According to the appendix, we look for a generator of the form (A.3), and apply the 
algorithm (A.4). We first consider 

Go = f4’ +g@’ (5.12) 

with f and g functions to be determined. 
Then 

GI  = - f @ ‘ - g @ ‘ +  f‘@’+g‘+‘ (5.13) 
for certain f: g’. We, compute 

~ 4 ’ , G 1 1 = ~ f - ~ ~ ’ ~ f ~ ~ @ ~ - ~ ~ + ~ @ ’ , g ~ ~ @ ’ + ~ ~ C  

and so to fulfil the test (A.4c.c) the expressions in parentheses must be weakly vanishing. 

Gz = f4’ + gq3 + ((f, HI - f’M’ + ((g, HI - g’)+’ + f”4’ + g”+’ 

for some f”, g“. The test for Gz requires to compute 

(4’> G z l =  M t >  gW3 + ((4I3(f, HI - f’} - (f. Hl + f‘) 4’ 

Now 

(5.14) 

+((4’ , Ig ,H}-g’ l+(g ,Hl-g’ )@2+PFC 

+ ({@I,  {g, H) - g’l - (f, H} + f‘) @’+ PFC. 

In order that these expressions be strongly primary first-class constraints, the coefficients 
of @’, 4’ and @’ must be weakly vanishing. From the coefficients of +3 we obtain in 
particular that I#’ ,  g) and {@’, g) are weakly vanishing. Looking at the coefficients of +’ 
in the test for GI  we obtain that f and g are weakly vanishing, so that the generator G is 
strongly vanishing: it becomes ineffective, since it leaves all solutions invariant. 
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5.3. Lagrangian gauge transformations 

The model has two independent Noether's gauge transformations. 
One of them is just the reparametrimtion. It arises easily from the fact that @A := 

KO.@{ = 0, i.e. one of the primary Lagrangian constraintsis identically vanishing. This fact 
yields a Noether's transformation with vanishing conserved quantity, GL = 0. According 
to the discussion on these transformations, we obtain a gauge transformation 

sz = &(t)Zl (5.15) 

The other transformation comes from GI = &(t)@ = &(t)@'p'), for which GL = 
since y+ =el; this is just a reparametrization. 

&(t)@d = &(t)@'$O). Then 

KO. Cl = i(t)$i 

so according to (3.2) we have r = i(t), and since y* = 6' we obtain 

sz = Z&(t)$ + E@)$' . (5.16) 

See [28] for a geometric interpretation of this transformation. 
It can be shown that these transformations coincide with those obtained in 1'2.71 by 

considering a first-order Lagrangian when the supplementary variables are written in terms 
of derivatives of I. 

Notice that these transformations and their generating functions GI are projectable to 
the Hamiltonian space; however, as we have explained at the end of the preceding section, 
they do not yield Hamiltonian gauge transformations, as it can be easily checked. 

6. Other examples 

Here we consider two simple examples of second-order singular Lagrangians to illustrate 
our procedure. 

( i ) L ( x o , x ~ , x d = x ~ .  
The momenta are i' = 1 and F0 = 0. 
There are two Hamiltonian constraints, @; = 1 - p' and @: = pO. In the intermediate 

space there is one constraint, $; = po. And finally there are no Lagrangian constraints. 
Let us look for a gauge Noether's transformation 'generated' by a function GI = &(t)po. 

We obtain KO . GI = 0, so it satisfies the required condition, and the transformation is 
6x = e ( a G I / a p o )  = &(t); this says that ~ ( t )  is completely~arbitrary, which, of course, is 
a consequence of the fact that [L]  = O~identically. 

Notice that GI projectable to a function GH = & ( P I  - 1) + &po in the Hamiltonian 
space. For this function K1 . GH = 0, and so in this case we obtain a Hamiltonian gauge 
transformation, 6xo  = E ,  ax' = i, 8p0 = sp' = 0. 

(ii) L ( X O , ~ ~ , ~ Z )  = $ ( X I X I ) .  
This is a first-order Lagrangian, but let us treat it as a second-order one. The momenta 

a r e j ' = O a n d f i o = x l .  
In this example there are no Lagrangian constraints. In the intermediate space there is 

one constraint, $; = pO.  There are two Hamiltonian constraints, $; = p' and @; = X I  - p o ;  
they are second class. In the intermediate space we have $I = XI - p o  and $: = X Z .  And 
finally we obtain two Lagrangian constraints, @A = xz and 4; = xj.  

As usual let us look for a function GI = f x z .  Now we find that KO . GI = 
(KO. f)x2 t G(f)x3; this is to vanish on the primary Lagrangian constraint submanifold, 
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so necessarily we have e(f) Y 0, GI Z 0 and therefore there are no Noether’s gauge 
transformations; this was expected since the solutions of the equations of motion are paths 
of constant velocity. 

Now let us look for the rigid Noether’s transformations of this Lagrangian. Due to the 
constraints of the intermediate space P I ,  we try a function GI(r,xo,xl). We obtain 

Since this has to vanish on the surface x2 Y 0, we obtain the condition 
aGl/ar + x,aGr/axo = 0, from which GI = g ( q t  - ~ 0 . ~ 1 ) ;  this yields two independent 
transformations, which are computed using the other term, the coefficient of xz, r = 
aGI/axl. 

7. Conclusions 

In this paper we have studied Noether’s symmetries for higher-order Lagrangians. This 
study is performed by using some intermediate spaces between those of Lagrangian and 
Hamiltonian spaces. We have seen that a conserved quanti& of a Noether’s transformation 
can be characterized in terms of a function in the first intermediate space satisfying a certain 
condition; this is also useful to find gauge transformations when the Lagrangian is singular. 

The issue of projectability to the phase space of the Lagrangian conserved quantities as 
well as of the transformations themselves becomes quite a lot more involved than in the 
first-order case. To get a clearer picture of the subject we have made a thorough study of the 
second-order case, where the structures of the general higher-order case already show up. 
As a consequence of this study, we present a variety of cases covering all the possibilities 
with regard to the projectability (or partial projectability) of the quantities involved. 

We give also some examples that illustrate several cases that appear in our analysis. 
In particular, the example of section 5 does not possess Hamiltonian gauge generators, in 
spite of the fact that it has Lagrangian Noether’s transformations which are projectable to 
the Hamiltonian space. 
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Appendix. Gauge transformations in the Hamiltonian formalism 

In this appendix we recall some results from [l l] .  We call dynamical symmetry 
transformations those transformations which map solutions of some equations of motion 
into solutions. 

In the Disac’s Hamiltonian formalism, the necessaty and suficient condition for a 
function G H ( ~ ,  p ;  r) to generate, through Poisson bracket, 

an infinitesimal dynamical symmetry transformation is that GH be afrsr-classfitnction and 
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satisfy 

(A&) 

(A.lb) 

where is the submanifold defined by all the Hamiltonian constraints in phase space, 
PFC stands for any primary first-class Hamiltonian constraint, and the notation f E 0 means 
j 

M 0 and d f 5 0 (Dirac's strong equality). 
M 

This conditions can be equivalently expressed in a more compact form: 

where V ( I )  is the surface defined by all the Lagrangian constraints in velocity space and 
K is the time-evolution operator K for first-order Lagrangians-see, for instance, [ 121. 
Though in [ l l ]  this is proved for first-order Lagrangians, it can be shown that this is also 
true for higher-order Lagrangians. More precisely, the condition is 

where Pj!; is the surface defined by all the constraints in the space Pi-, . 
More particularly, we call a gauge transformation a dynamical symmetry transformation 

which depends on arbitrary functions of time. The general form for a generator of a 
Hamiltonian gauge transformation, depending on one arbitrary function, can be taken as 

where 
To find a gauge. generator, the characterization (A.2) or (A.l) of GH as a dynamical 

symmetry generator  splits yielding the following constructive algorithm, where strong 
equalities have been changed to normal equalities [ll]: 

is a kth primitive of an arbitrary function of time E .  

Go = PFC 

(Gx, H} + Ga+i = PFC 

(PFC, G K )  2 PFC. 
P(/l 

(A.4a) 
(A.46) 
(A.4c) 

It is noticed, therefore, that though there may be second-class constraints, the generators of 
Hamiltonian gauge transformations are built up of first-class constraints, and, according to 
(A.4a), are headed by a primary one. 

Some results on the existence of a basis of primary first-class Hamiltonian constraints 
each one yielding a gauge transformations are known: this is guaranteed under some 
regularity conditions [lO],.namely the constancy of the rank of Poisson brackets among 
constraints and the non-appearance of ineffective constraints. If these Hamiltonian gauge 
transformations exist, their pull-back constitutes a complete set of Lagrangian gauge 
transformations. 

On the other hand, as we have said in the introduction, there are examples of first- 
order Lagrangians for which Hamiltonian gauge generators do not 'exist, whereas they have 
Lagrangian gauge transformations [13]. In this paper we have seen that this also happens 
for a relativistic particle with Lagrangian proportional to the curvature. 
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